刘晓东

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:东北大学

学位:博士

所在单位:控制科学与工程学院

学科:应用数学. 应用数学. 控制理论与控制工程

办公地点:创新园大厦A0620

联系方式:电话: (+86-411) 84726020 (home) (+86-411) 84709380 (Office) 传真: (+86-411) 84707579 手机: (+86-411) 13130042458

电子邮箱:xdliuros@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Robust H-infinity Fuzzy Control for Discrete-time Nonlinear Systems

点击次数:

论文类型:期刊论文

发表时间:2010-02-01

发表刊物:INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS

收录刊物:EI、SCIE

卷号:8

期号:1

页面范围:118-126

ISSN号:1598-6446

关键字:Homogeneous polynomially basis-dependent matrix function; robust control; linear matrix inequality; non-quadratic Lyapunov function; Takagi-Sugeno's fuzzy model

摘要:This paper studies the problem of robust H-infinity control for discrete-time nonlinear systems presented as Takagi-Sugeno's Fuzzy models. The generalized non-parallel distributed compensation (non-PDC) law and non-quadratic Lyapunov function is constructed by the proposed homogeneouspolynomially basis-dependent matrix function (HPB-MF for abbreviation). Based on the generalized non-PDC law and non-quadratic Lyapunov function, some linear matrix inequalities (LMIs) are obtained by exploiting the possible combinations of the basis functions. These LMIs ensure the asymptotic stability of the closed-loop system and guarantee a norm bound constraint on disturbance attenuation. In addition, it is shown that the LMIs become less conservative as the degree of HPB-MF increases. The merit of the methods presented in this paper lies in their less conservatism than other methods, as shown by a numerical example borrowed from the literature.