Release Time:2019-03-11 Hits:
Indexed by: Journal Article
Date of Publication: 2018-04-15
Journal: SENSORS AND ACTUATORS B-CHEMICAL
Included Journals: EI、SCIE
Volume: 259
Page Number: 626-632
ISSN: 0925-4005
Key Words: Sensor; Cell; Fluorescence; Electron transfer; Free energy
Abstract: Fluorescent chemosensors are widely used in chemical engineering, bio-engineering, medical engineering, and environmental engineering. A lot of the chemosensors are based on photo-induced electron transfer (PET) process. In complicated practical systems, the proton is always the most serious interference factor. Herein a new method is proposed for PET chemosensor design to overcome the proton interference: to tune the Delta G of the electron transfer process by introducing different substituents of the sensor molecules. Chemosensors for Zn2+ detection are demonstrated. When the highest occupied molecular orbital (HOMO) energy levels of the fluorophores (4-substituted 1, 8-naphthalimide) are lower than the HOMO energy level of protonated receptor (dipicolylamine-H+), the fluorescence responding to Zn2+ ions is not influenced by pH, meanwhile, the chemosensors can work in acidic media with pH below the pKa values. This should reveal a new criterion for designing of PET based chemosensors for selectivity improvement. (C) 2017 Elsevier B.V. All rights reserved.