location: Current position: Home >> Scientific Research >> Paper Publications

Highly Sensitive Naphthalene-Based Two-Photon Fluorescent Probe for in Situ Real-Time Bioimaging of Ultratrace Cyclooxygenase-2 in Living Biosystems

Hits:

Indexed by:期刊论文

Date of Publication:2014-09-16

Journal:ANALYTICAL CHEMISTRY

Included Journals:SCIE、EI、Scopus

Volume:86

Issue:18

Page Number:9131-9138

ISSN No.:0003-2700

Abstract:Detecting and imaging of ultratrace cyclooxygenase-2 in living biosystems could provide much important valuable information for the diagnosis and intervention of cancer. Molecular probes, whose fluorescent signals are generated by cyclooxygenase-2, hold great potential for identification and enumeration of cyclooxygenase-2 in living biosystems. Although quite a few fluorescent probes have been reported for cyclooxygenase-2, the use fluorogenic probe with the excellent two-photon properties for the determination of ultratrace cyclooxygenase-2 has been scarce. Herein, an offon fluorescence probe (BTDAN-COX-2), able to report and image the presence of ultratrace cyclooxygenase-2 in living biosystems, has been designed and evaluated. In order to improve sensitivity and specific selectivity of probe for ultratrace cyclooxygenase-2, BTDAN-COX-2 employed cyclooxygenase-2s inhibitor as recognition group, because it is a classical and efficient recognition group for cyclooxygenase-2. A polarity-sensitive naphthalene derivative (BTDAN) as fluorophore was introduced into the molecule to enhance two-photon properties of BTDAN-COX-2. In the absent of cyclooxygenase-2, BTDAN-COX-2 mainly exists in a folded conformation where probe fluorescence is quenched through photoinduced electron transfer between the fluorophore and the recognition group. Under the condition of existence of cyclooxygenase-2, fluorescence of probe is turned on, because photoinduced electron transfer between the fluorophore and the recognition group is restrained. BTDAN-COX-2 provides high signal-to-background staining for the ultratrace cyclooxygenase-2 and has been successfully used to rapidly detect and image ultratrace cyclooxygenase-2 in living biosystems.

Pre One:An "Enhanced PET"-Based Fluorescent Probe with Ultrasensitivity for Imaging Basal and Elesclomol-Induced HClO in Cancer Cells

Next One:A fluorescent probe for site I binding and sensitive discrimination of HSA from BSA