个人信息Personal Information
副教授
博士生导师
硕士生导师
任职 : 抗震所所长
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:水利工程系
学科:水工结构工程. 结构工程. 防灾减灾工程及防护工程
办公地点:大连理工大学建设工程学部4号实验楼402室
联系方式:jianboli@dlut.edu.cn
电子邮箱:jianboli@dlut.edu.cn
Seismic failure modeling of concrete dams considering heterogeneity of concrete
点击次数:
论文类型:期刊论文
发表时间:2011-12-01
发表刊物:SOIL DYNAMICS AND EARTHQUAKE ENGINEERING
收录刊物:Scopus、SCIE、EI
卷号:31
期号:12
页面范围:1678-1689
ISSN号:0267-7261
摘要:Study on the failure process of high concrete dams subjected to strong earthquakes is crucial to reasonable evaluation of their seismic safety. Numerical simulation in this aspect involves dynamic failure analysis of big bulk concrete dam subjected to cyclic loading. The Rock Failure Process Analysis (RFPA) proposed by C.A. Tang, with successful applications to failure modeling of rock and concrete specimens mainly subjected to static loading, is extended for this purpose. For using the proposed model, no knowledge on the cracking route needs to be known beforehand, and no remeshing is required. Simulation of the whole process of elastic deformation, initiation and propagation of microcracks, severe damage and ultimate failure of concrete dams in earthquakes with a unified model is enabled. The model is verified through a shaking table test of an arch dam. Finally a practical gravity dam is employed as a numerical example. Considering the uncertainty in ground motion input and concrete material, typical failure process and failure modes of gravity dam are presented. Several small cracks may occur due to tension particularly at dam neck, dam faces and dam heel, and a few of them evolve into dominant ones. Relatively smaller earthquake may cause damage to the dam neck while a bigger one may bring on cracks at lower parts of the dams. Cracking at the dam bottom may incline to a direction almost perpendicular to the downstream face after propagating horizontally for a certain distance when the shaking is strong enough. (C) 2011 Elsevier Ltd. All rights reserved.