个人信息Personal Information
副教授
博士生导师
硕士生导师
任职 : 建筑环境与设备研究所所长
性别:男
毕业院校:哈尔滨工业大学
学位:博士
所在单位:土木工程系
学科:供热、供燃气、通风及空调工程
办公地点:综合实验3号楼327
联系方式:0411-84708091
电子邮箱:lxl@dlut.edu.cn
Effects of Reduced Gravity Conditions on Bubble Dispersion Characteristics in the Bubble Column
点击次数:
论文类型:期刊论文
发表时间:2016-08-01
发表刊物:MICROGRAVITY SCIENCE AND TECHNOLOGY
收录刊物:SCIE、EI、Scopus
卷号:28
期号:4
页面范围:441-450
ISSN号:0938-0108
关键字:Bubble dispersion; Reduced gravity; Bubble-liquid two-phase turbulent flows; Bubble column; Numerical simulation
摘要:Bubble-liquid turbulent flow has an excellent heat and mass transfer behaviors than single gas or liquid flow. In order to analyze the effects of normal and reduced gravity on cold bubble-liquid two-phase turbulent flow in bubble column a second-order moment cold bubble-liquid two-phase turbulent model was developed to disclose the bubble dispersion characteristics. Under the reduced gravity condition, volume fraction caused by the decrease of buoyance force is larger than normal gravity level due to bigger bubble solid volume. In addition, bubble frequency is also decreased by in decrease of buoyance force. Normal and shear stresses have strongly anisotropic characteristics at every directions and have larger values under normal gravity than reduced gravity. The liquid turbulent kinetic energy has the two-peak bimodal distribution and weaker than bubble turbulent kinetic energy with one peak unimodal, which is caused by vigorous wake fluctuations. The correlation of fluctuation velocities between bubble and liquid has clearly anisotropic behaviors Under reduced gravity, the bubble motion has a little impact on liquid turbulent flow caused by slight buoyancy force, however, it will greatly reduce the liquid turbulent intensity due to energy cascade transport, which was transformed into bubbles or dissipated by interface friction. Bubble formation and detachment mechanisms affected by gravity conditions lead to the different levels of bubble dispersion distributions.