谭毅Yi Tan

(教授)

 博士生导师  硕士生导师
学位:博士
性别:男
毕业院校:东京工业大学
所在单位:材料科学与工程学院
电子邮箱:tanyi@dlut.edu.cn

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Studies on properties of rayon- and polyacrylonitrile-based graphite felt electrodes affecting Fe/Cr redox flow battery performance

发表时间:2019-03-11 点击次数:

论文名称:Studies on properties of rayon- and polyacrylonitrile-based graphite felt electrodes affecting Fe/Cr redox flow battery performance
论文类型:期刊论文
发表刊物:ELECTROCHIMICA ACTA
收录刊物:Scopus、SCIE、EI
卷号:248
页面范围:603-613
ISSN号:0013-4686
关键字:iron-chromium redox flow battery; rayon; polyacrylonitrile; graphite felt; Bi
摘要:The performances of rayon (RGF) and polyacrylonitrile (PGF) based graphite felts as electrodes are compared in the iron-chromium redox flow battery (ICRFB). The essential differences in structure between RGF and PGF are also characterized in this study. The results show that the RGF electrode displays excellent electrochemical performance for negative redox couple (Cr3+/Cr2+), resulting in the cell with higher charge efficiency and slower capacity decay. However, due to the high degree of graphitization and electrochemical activity for positive redox couple (Fe2+/Fe3+) in PGF, the cell using PGF has higher voltage efficiency and energy efficiency, as well as lower area surface resistance than the cell with RGF. The fundamental difference between RGF and PGF is the crystallites structure in radial direction and basal plane of the fiber. PGF with the core-rim structure has better graphitization stacked in radial direction of the fiber. Further, PGF has more defective carbons exposed in the basal planes, while the surface of RGF exhibits a higher concentration of oxygen functional groups. The role of catalysts in the ICRFB has also been studied by introducing bismuth (Bi) into RGF and PGF used as negative electrodes. The electrocatalytic activities of RGF and PGF before and after modification with Bi are investigated by cyclic voltammetry (CV), linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS). Bismuth deposition on the negative electrode is found to improve the negative reaction in ICRFB. (C) 2017 Elsevier Ltd. All rights reserved.
发表时间:2017-09-10