• 更多栏目

    张耀斌

    • 教授     博士生导师   硕士生导师
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:环境学院
    • 学科:环境科学与工程. 环境工程. 环境科学
    • 办公地点:环境楼B301
    • 电子邮箱:zhangyb@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Tuning the electrochemical properties of a boron and nitrogen codoped nanodiamond rod array to achieve high performance for both electro-oxidation and electro-reduction

    点击次数:

    论文类型:期刊论文

    发表时间:2013-12-14

    发表刊物:JOURNAL OF MATERIALS CHEMISTRY A

    收录刊物:SCIE、EI、Scopus

    卷号:1

    期号:46

    页面范围:14706-14712

    ISSN号:2050-7488

    摘要:Design of highly active metal-free electrocatalysts to replace noble metal based materials is crucial for electrocatalysis in various applications. Here we present an efficient and multifunctional metal-free electrocatalyst, vertically aligned boron and nitrogen codoped nanodiamond (VA-BND)/Si rod array (RA). It can achieve high electro-oxidation activity by varying its chemical composition while maintaining superior electro-reduction performance. Methanol oxidation was selected to evaluate its electro-oxidation activity towards small organic molecules in fuel cells. The VA-BND3/Si RA (B/C 0.015 and N-2 = 1.0%) presented superior methanol oxidation activity with a more negative peak potential compared with commercial Pt/C. Meanwhile, the durability of VA-BND3/Si RA was highly improved relative to that of the Pt/C catalyst. Reduction of refractory organic pollutants, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), was chosen to study the electro-reduction activity of VA-BND3/Si RA. The VA-BND3/Si RA was found to be advantageous over the Pd electrode for electro-reduction of BDE-47 in both kinetics and current efficiency at -0.8 V. The excellent electrocatalytic performance of VA-BND/Si RA mainly originated from the doped B and N.