个人信息Personal Information
教授
硕士生导师
性别:男
毕业院校:美国加州大学洛杉矶分校
学位:博士
所在单位:数学科学学院
学科:基础数学
电子邮箱:yangzhq@dlut.edu.cn
Regional knot invariants
点击次数:
论文类型:期刊论文
发表时间:2017-05-01
发表刊物:JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS
收录刊物:SCIE、Scopus
卷号:26
期号:6,SI
ISSN号:0218-2165
关键字:Regional knot invariant; tridle; Alexander polynomial; presentation matrix; linear tridle
摘要:In this paper, a regional knot invariant is constructed. Like the Wirtinger presentation of a knot group, each planar region contributes a generator, and each crossing contributes a relation. The invariant is called a tridle of the link. As in the quandle theory, one can define Alexander quandle and get Alexander polynomial from it. For link diagram, one can also define a linear tridle and its presentation matrix. A polynomial invariant can be derived from the matrix just like the Alexander polynomial case.