个人信息Personal Information
教授
硕士生导师
性别:男
毕业院校:美国加州大学洛杉矶分校
学位:博士
所在单位:数学科学学院
学科:基础数学
电子邮箱:yangzhq@dlut.edu.cn
A result on the Slope conjectures for 3-string Montesinos knots
点击次数:
论文类型:期刊论文
发表时间:2018-11-01
发表刊物:JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS
收录刊物:SCIE、Scopus
卷号:27
期号:13,SI
ISSN号:0218-2165
关键字:Slope conjecture; colored Jones polynomial; quadratic integer programming; boundary slope; incompressible surface
摘要:The Slope Conjecture and the Strong Slope Conjecture predict that the degree of the colored Jones polynomial of a knot is matched by the boundary slope and the Euler characteristic of some essential surfaces in the knot complement. By solving a problem of quadratic integer programming to find the maximal degree and using the Hatcher-Oertel edgepath system to find the corresponding essential surface, we verify the Slope Conjectures for a family of 3-string Montesinos knots satisfying certain conditions.