Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Title of Paper:连续小波最优重构尺度确定方法与故障早期识别
Hits:
Date of Publication:2014-05-28
Journal:机械工程学报
Included Journals:PKU、ISTIC、CSCD、EI、Scopus
Volume:50
Issue:17
Page Number:69-76
ISSN No.:0577-6686
Key Words:连续小波变换;信号重构;小波熵;早期故障识别
Abstract:旋转设备的微弱故障特征信息提取对于故障的早期预警具有重要意义,连续小波可以通过变换对信号实现多尺度细化分析,能够在不同的尺度上描述信号的局部特征,因此有利于微弱故障信号的检测。不同尺度上的信号重构对于设备的故障特征表示并不相同,为此提出一种基于连续小波变换的微弱特征提取新方法。对信号采用连续小波进行分解,应用小波熵来选择最优的尺度进行信号重构,并对重构信号进行包络谱分析;根据提取的特征频率来确定故障的种类。通过仿真信号和滚动轴承故障信号的微弱特征提取进行方法的验证分析。研究表明基于连续小波最优尺度重构方法能够有效地对微弱特征进行提取。
Open time:..
The Last Update Time: ..