![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:机械工程学院
学科:机械电子工程
办公地点:机械工程学院(大方楼)7025房间
联系方式:0411-84706561-8048
电子邮箱:lihk@dlut.edu.cn
Incipient Feature Extraction for Rolling Element Bearing Based on Particle Filter Preprocessing and Kurtogram
点击次数:
论文类型:会议论文
发表时间:2016-01-01
收录刊物:CPCI-S
页面范围:703-708
关键字:Fast Kurtogram; Rolling element bearing; Particle filter; State space
摘要:Fast kurtogram (FK) has been broadly investigated on fault diagnosis for rolling element bearing(REB) since it is put forward. But its performance is low as incipient feature extraction and fault diagnosis of REB as noise has greatly effect on the classification accuracy. How to effectively improve the signal-to-noise ratio(SNR) is important for characteristic frequency(CF) determination based on FK. In this research, the SNR can be improved by using particle filter(PF) to be satisfied with noise interference. It can be useful for the improvement of FK after de-noise. Firstly, state space function for the analyzing signal is constructed, background noise of origin signal can be extracted by using the PF and improve the SNR. Then, the optimal band is chosen by using FK after PF preprocessing. In the end, fault CF can be obtained by using spectrum analysis. Simulation and monitored vibration signals for REB are used to verify the effectiveness of this method. It can be concluded that the proposed method has better performance compared with that of FK and EMD-Kurtogram on REB fault early classification.