![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:机械工程学院
学科:机械电子工程
办公地点:机械工程学院(大方楼)7025房间
联系方式:0411-84706561-8048
电子邮箱:lihk@dlut.edu.cn
BLADE INCIPIENT CRACK DETERMINATION FOR CENTRIFUGAL COMPRESSOR BASED ON CWT-STOCHASTIC RESONANCE METHOD
点击次数:
论文类型:会议论文
发表时间:2017-06-26
收录刊物:EI、CPCI-S
卷号:7B-2017
摘要:Centrifugal compressor is a piece of key equipment for factories. Among the components of centrifugal compressor, impeller is a pivotal part as it is used to transform kinetic energy to pressure energy. But it usually leads to blade. crack or failure as irregular aerodynamic load effect on the blade. Therefore, early crack feature extraction and pattern recognition is important to prevent it from failure. Although time series analysis for monitored signal can be used on feature extraction, incipient weak feature extraction method should be' investigated. In this research, pressure pulsation sensors arranged in close vicinity to crack area are used to monitor the blade crack and feature extraction. As there are different kinds of flow interference, the pressure pulsation signal for centrifugal compressor is full of nonlinear characteristics. Therefore, how to obtain the weak information from monitored signal is investigated. Although FFT and envelope analysis have been widely used for rotating equipment, they are not suitable for the determination of incipient crack of a blade as the signal modulation and noise interference. In this research, stochastic resonance is used for the pressure pulsation signal. The results show that it is an effective tool to blade incipient crack classification on centrifugal compressor.