![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:机械工程学院
学科:机械电子工程
办公地点:机械工程学院(大方楼)7025房间
联系方式:0411-84706561-8048
电子邮箱:lihk@dlut.edu.cn
Investigation on early fault classification for rolling element bearing based on the optimal frequency band determination
点击次数:
论文类型:期刊论文
发表时间:2015-02-01
发表刊物:JOURNAL OF INTELLIGENT MANUFACTURING
收录刊物:EI、SCIE、Scopus
卷号:26
期号:1
页面范围:189-198
ISSN号:0956-5515
关键字:Wavelet packet decomposition; Kurtosis; Optimal frequency band; Early fault diagnosis; Rolling element bearing
摘要:Condition monitoring and fault diagnosis of working machine become increasingly important during the manufacturing process because they are closely related to the quality of product. In the meanwhile, they are crucial for early fault diagnosis of rolling element bearing (REB) as a machine always works in an off-design condition for machine tools. The key issue of REB early fault diagnosis is the optimal frequency band determination based on envelope analysis. In this research, a new method is proposed to determine the best frequency band for REB fault diagnosis by using a reference signal to determine the analyzed frequency band. The best frequency band is obtained according to the variance by comparing current condition with a normal one. To verify the effectiveness of this method, simulation signal and experimental signal in the test rig are applied for investigation. As well, practical monitored REB early fault diagnosis is also investigated to verify the effectiveness of this method. It can be concluded that this method can improve the accuracy for pattern recognition and benefit the development of REB fault diagnosis for manufacturing machines. This method assists us to develop an REB early fault diagnosis system, which is suitable for industrial application according to monitored REB condition investigation.