李宏坤

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:机械工程学院

学科:机械电子工程

办公地点:机械工程学院(大方楼)7025房间

联系方式:0411-84706561-8048

电子邮箱:lihk@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

小波尺度谱同步平均在弱信息识别中的应用

点击次数:

论文类型:期刊论文

发表时间:2013-01-16

发表刊物:机械工程学报

收录刊物:EI、PKU、ISTIC、CSCD、Scopus

卷号:49

期号:5

页面范围:32-38

ISSN号:0577-6686

关键字:小波尺度谱;同步平均;旋转机械;弱故障识别

摘要:旋转机械的早期故障特征微弱,容易受到噪声的干扰,不容易准确识别.而旋转机械发生故障时其振动信号往往是非平稳信号,不同的非平稳性对应不同的故障状态.连续小波变换可以通过伸缩平移变换对信号进行多尺度细化分析,能够在不同的尺度上描述信号的局部特征,因此有利于故障信号的检测.时域同步平均可以削弱观测信号中的随机成分,降低噪声干扰,提取与平均周期相关的确定性信号,提高信噪比.结合小波变换和同步平均的优点,提出小波尺度谱同步平均的方法.对多周期的振动信号进行小波连续变换,并进行尺度谱重排,获得重排小波尺度谱;根据信号的周期性,对尺度谱进行同步平均,同步平均后的尺度谱可以有效地抑制干扰噪声,识别弱故障信息.通过仿真分析和实例分析验证了本方法的有效性,为旋转机械的早期故障诊断提供了新方法.