李宏坤

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:机械工程学院

学科:机械电子工程

办公地点:机械工程学院(大方楼)7025房间

联系方式:0411-84706561-8048

电子邮箱:lihk@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

基于KPCA-SVM的柴油机状态识别方法的研究

点击次数:

论文类型:期刊论文

发表时间:2009-03-15

发表刊物:振动、测试与诊断

收录刊物:Scopus、EI、PKU、CSCD

卷号:29

期号:1

页面范围:42-45

ISSN号:1004-6801

关键字:核主元分析;支持向量机;柴油机;状态识别

摘要:为了有效地对柴油机的运行状态进行状态识别,根据柴油机的特征信息和识别的特点,研究了基于核主元分析(KPCA)和支持向量机(SVM)进行柴油机状态识别的故障诊断方法.首先,对柴油机进行特征提取,构成一个特征向量.然后对其进行核主元分析,计算得到能反映设备状态的特征向量,有效去除信息的冗余.最后,将得到的特征向量进行支持向量机的训练学习,识别柴油机的状态.通过实验室柴油机燃烧系统不同运行状态下的识别分析,验证了此方法的可行性和实用性.