Hits:
Indexed by:期刊论文
Date of Publication:2013-04-01
Journal:JOURNAL OF NUCLEAR MATERIALS
Included Journals:SCIE、EI
Volume:435
Issue:1-3
Page Number:71-76
ISSN No.:0022-3115
Abstract:Vanadium alloys are promising candidate for the structural materials of first-wall in future fusion reactor. In realistic vanadium alloys, there always exist some impurities (e.g. oxygen, nitrogen and carbon). To understand the microscopic behavior of these impurities, we investigated energetic and diffusion of O, N and C impurities as well as O-O/N-N/C-C interactions in pure vanadium using first-principles calculations. The O, N and C atoms prefer to occupy an octahedral interstitial site, and exhibit high diffusion barrier with 1.23 eV, 1.48 eV and 1.14 eV via diffusing between two neighboring octahedral interstitial sites, respectively. Such high barriers indicate that these impurities are hard to diffuse inside bulk vanadium. The corresponding diffusion coefficients as function of temperature were estimated using the Arrhenius diffusion equation. Our theoretical results provide the fundamental parameters for understanding the impurity effects in early stage of irradiation damage. (c) 2012 Elsevier B.V. All rights reserved.