唐春安

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:President of international exchange committee of the Chinese Society of Rock Mechanics and Engineering CSRME

其他任职:国际岩石力学与岩石工程学会(ISRM)中国国家小组副主席

性别:男

毕业院校:东北大学

学位:博士

所在单位:土木工程系

办公地点:综合实验四号楼330

联系方式:tca@mail.neu.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Hydraulic fracturing propagation mechanism during shale gas reservoir stimulation through horizontal well [Mehanizam za propagaciju hidrauli?kog frakturiranja tijekom stimuliranja naslaga naftnih ?kriljaca kroz horizontalnu bu?otinu]

点击次数:

论文类型:期刊论文

发表时间:2016-01-01

发表刊物:Tehnicki Vjesnik

收录刊物:Scopus

卷号:23

期号:2

页面范围:477-490

ISSN号:13303651

摘要:The fracture pattern of rock mass in shale gas reservoirs is one of the main factors affecting the efficiency of hydraulic fracturing. In this paper, physical experiments and numerical modelling were conducted to systematically investigate the effect of the in-situ stress and perforation angle on the hydraulic fracture initiation pressure and location, fracture propagation, and fracture pattern in a horizontal well drilled by Sinopec Corp. in Luojia area of Shengli Oilfield. A total of six different in-situ stress combinations and eight different perforation angles were considered for the stratified rock mass during the hydraulic fracturing. A summary of the fracture initiations and propagation, and the final fracture patterns induced by the hydraulic fracturing in the stratified rock masses reveals that, for the stratified rock masses with the same perforation angle, the larger the in-situ stress ratio (i.e. lower maximum horizontal principal stress when the vertical stress remains constant) is, the lower hydraulic pressure is required for hydraulic fracturing initiation and propagation. Moreover, it is found that, for the stratified rock mass under the same stress ratio, the hydraulic fracturing pressure in the case with a perforation angle of 30   is higher than that in all other cases. Furthermore, it is noted that the effect of the stratification on the hydraulic fracturing becomes weaker with the in-situ stress ratio increasing. It is finally concluded that the results from this study can provide important theoretical guidance for improving the hydraulic fracturing design in order to ensure the effective shale gas reservoir stimulations. ? 2016, Strojarski Facultet. All rights reserved.