唐春安

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:President of international exchange committee of the Chinese Society of Rock Mechanics and Engineering CSRME

其他任职:国际岩石力学与岩石工程学会(ISRM)中国国家小组副主席

性别:男

毕业院校:东北大学

学位:博士

所在单位:土木工程系

办公地点:综合实验四号楼330

联系方式:tca@mail.neu.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Numerical SHPB Tests of Rocks Under Combined Static and Dynamic Loading Conditions with Application to Dynamic Behavior of Rocks Under In Situ Stresses

点击次数:

论文类型:期刊论文

发表时间:2016-10-01

发表刊物:ROCK MECHANICS AND ROCK ENGINEERING

收录刊物:SCIE、EI、Scopus

卷号:49

期号:10

页面范围:3935-3946

ISSN号:0723-2632

关键字:SHPB; Rock dynamic behavior; Combined static and dynamic loading; Numerical test

摘要:A modified split Hopkinson pressure bar (SHPB) numerical testing system is established to study the characteristics of rocks under simultaneous static and dynamic loading conditions following verification of the capability of the SHPB numerical system through comparison with laboratory measurements (Liao et al. in Rock Mech Rock Eng, 2016. doi:10.1007/s00603-016-0954-8). Three different methods are employed in this numerical testing system to address the contact problem between a rock specimen and bars. The effects of stand-alone static axial pressure, stand-alone lateral confining pressures, and a combination of them are analyzed. It is determined that the rock total strength and the dynamic strength are greatly dependent on the static axial and confining pressures. Moreover, the friction along the interfaces between the rock specimen and bars cannot be ignored, particularly for high axial pressure conditions. Subsequently, the findings are applied to determine the dynamic behavior of rocks with in situ stresses. The effects of the magnitude of horizontal and vertical initial stresses at varied depths and their ratios are investigated. It is observed that the dynamic strength of deep rocks increases with increasing depth or the ratio of horizontal-to-vertical initial stresses (K). The dynamic behavior of deeper rocks is more sensitive to K, and the rock dynamic strength increases faster with depth in areas with higher K.