唐春安

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:President of international exchange committee of the Chinese Society of Rock Mechanics and Engineering CSRME

其他任职:国际岩石力学与岩石工程学会(ISRM)中国国家小组副主席

性别:男

毕业院校:东北大学

学位:博士

所在单位:土木工程系

办公地点:综合实验四号楼330

联系方式:tca@mail.neu.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Rib Spalling 3D Model for Soft Coal Seam Faces with Large Mining Height in Protective Seam Mining: Theoretical and Numerical Analyses

点击次数:

论文类型:期刊论文

发表时间:2021-01-10

发表刊物:GEOFLUIDS

卷号:2020

ISSN号:1468-8115

摘要:Fully-mechanized mining of coal face with a large cutting height is generally jeopardized by rib spalling disaster in the working face. Preventive measures based on undisturbed coal seam conditions fail to provide safe predictions, as large-scale fractures in soft coal face frequently appear before excavation due to mining-induced stresses. This paper investigates a case study of the Paner Mine 11224 working face in the Huainan mine area, China, which features an overlying protected layer in the protective seam mining. To simulate the failure process in such a mine, we elaborated a simplified physical-mechanical model of a coal wall that underwent shear failure and sliding instability, in compliance with the triangular prism unit criterion. Similar simulation experiments, theoretical calculations, and borehole monitoring were used to comprehensively analyze the overburden fracture and movement after mining the lower protective seam. The development height of three overburden zones was determined, and the characteristics of the protected layer affected by mining were obtained. The results show that the failure is mainly related to the roof load, coal cohesion, internal friction angle, coal seam inclination, and sidewall protecting force. The key to limiting the frictional sliding of a slip body is to reduce the roof load and increase the sliding coefficient and cohesion of the main control weak surface (MCWS). Besides, a self-developed three-dimensional numerical calculation software RFPA3D (Realistic Fracture Process 3D Analysis), which considered the rock heterogeneity, was used to reproduce a weak triangular prism's progressive failure process. The numerical simulation results agreed with the fracture pattern predicted by the theoretical model, which accurately described the rib spalling mechanisms in a soft coal face with a large cutting height and a protective layer.