唐春安

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:President of international exchange committee of the Chinese Society of Rock Mechanics and Engineering CSRME

其他任职:国际岩石力学与岩石工程学会(ISRM)中国国家小组副主席

性别:男

毕业院校:东北大学

学位:博士

所在单位:土木工程系

办公地点:综合实验四号楼330

联系方式:tca@mail.neu.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Numerical analysis of slope stability based on the gravity increase method

点击次数:

论文类型:期刊论文

发表时间:2021-01-13

发表刊物:COMPUTERS AND GEOTECHNICS

卷号:36

期号:7

页面范围:1246-1258

ISSN号:0266-352X

关键字:Numerical simulation; Gravity increase method (GIM); Acoustic emission; Slope stability; Failure surface

摘要:A micromechanical model is proposed for studying the stability and failure process of slopes based on the gravity increase method (GIM). In this numerical model the heterogeneity of rock at a mesoscopic level is considered by assuming that the material properties conform to the Weibull distribution. Elastic damage mechanics is a method used for describing the constitutive law of the meso-level element, the finite element method (FEM) is employed as the basic stress analysis tool, and the maximum tensile strain criterion and the Mohr-Coulomb criterion are utilised as the damage threshold. The numerical model is implemented into the Realistic Failure Process Analysis (RFPA) code using finite element programming, and an extended version of RFPA, i.e., RFPA-GIM, is developed to analyse the failure process and stability of slopes. In the numerical modelling with RFPA-GIM, the critical failure surface of slopes is obtained by increasing the gravity gradually but keeping material properties constant. The acoustic emission (AE) event rate is employed as the criterion for slope failure. The salient feature of the RFPA-GIM in stability analysis of slopes is that the critical failure surface as well as the safety factor can be obtained without any presumption for the shape and location of the failure surface. Several numerical tests have been conducted to demonstrate the feasibility of RFPA-GIM. Numerical results agree well with experimental results and those predicted using the FEM strength reduction method and conventional limit equilibrium analysis. Furthermore it is shown that selection of the AE rate as the criterion for slope failure is reasonable and effective. Finally, the RFPA-GIM is applied to several more complex cases, including slopes in jointed rock masses and layered rock formations. The results indicate that the RFPA-GIM is capable of capturing the mechanism of slope failure and has the potential for application in a larger range of geo-engineering. (C) 2009 Elsevier Ltd. All rights reserved.