唐春安

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:President of international exchange committee of the Chinese Society of Rock Mechanics and Engineering CSRME

其他任职:国际岩石力学与岩石工程学会(ISRM)中国国家小组副主席

性别:男

毕业院校:东北大学

学位:博士

所在单位:土木工程系

办公地点:综合实验四号楼330

联系方式:tca@mail.neu.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Study on crack curving and branching mechanism in quasi-brittle materials under dynamic biaxial loading

点击次数:

论文类型:期刊论文

发表时间:2012-09-01

发表刊物:INTERNATIONAL JOURNAL OF FRACTURE

收录刊物:SCIE、EI、Scopus

卷号:177

期号:1

页面范围:53-72

ISSN号:0376-9429

关键字:Crack propagation; Crack curving; Branch crack; Heterogeneity; Weibull distribution; Microcracks

摘要:Attempts are made to analyze the temporal and spatial effect and the complex mechanical behaviors of microcracks and the macro crack at mesoscopic scale based on the damage evolution principle. The mechanism of crack curving and branching in quasi-brittle materials under dynamic biaxial loading is investigated. The effects of different ratios between the load in the horizontal and vertical directions (for convenience, the loading ratio is denoted by B in this paper), crack dip angles and material homogeneity on crack curving and branching are considered. The results indicate that: Crack curving is mainly controlled by the loading ratio, while initiation and propagation of branch microcracks are related to the stress level. The initial dip angle of crack can vary the stress configuration at the crack tip zone. If the loading ratio remains constant, the crack tends to propagate toward the vertical direction with increasing crack dip angle. It is also found that heterogeneity due to defects in the material play an important role in the distribution of tiny voids and cracks in the material and the crack propagation mode. The results in this study are not only in good agreement with the physical test results, but also can provide some valuable reference for studies on the tensile properties and failure modes of heterogeneous quasi-brittle materials with internal defects.