Release Time:2019-03-12 Hits:
Indexed by: Journal Article
Date of Publication: 2017-08-01
Journal: CATALYSIS LETTERS
Included Journals: Scopus、EI、SCIE
Volume: 147
Issue: 8
Page Number: 2215-2224
ISSN: 1011-372X
Key Words: Nb2O5; Bulk nickel catalysts, synergistic effect; Hydroconversion; Anisole
Abstract: A series of bimetallic Nb-Ni oxide catalysts with different Nb/Ni molar ratio have been prepared by chemical precipitation method. XRD, Raman and XPS results indicate that amorphous Nb2O5 species exist in the samples with a Nb/Ni ratio about 0.087. The as-synthesized bimetallic Nb-Ni oxides effectively promote the dispersion of NiO active components, as a result effectively inhibit the agglomeration of NiO particles. Ni0.92Nb0.08O sample with the largest surface area of 173 m(2)/g mainly consists of fold-like nanosheets and the amorphous Nb2O5 species are well-dispersed all over the bulk NiO. After the reduction in hydrogen, the Nb-promoted bulk nickel catalysts display better catalytic performance for hydrodeoxygenation of lignin-derived anisole to biofuels than bulk Ni catalyst. The selectivity to deoxygenated products with using Ni0.92Nb0.08 catalyst increases 2.5 fold to that with bulk Ni catalyst at 160 A degrees C and 3 MPa H-2, as a result of the synergistic effect between amorphous Nb2O5 species and metal Ni active sites. In addition, with further increase in the reaction temperature to 200 A degrees C, deoxygenation almost goes quantitatively.
High-specific-surface-area Nb-Ni oxides are prepared by using chemical precipitation, and display excellent HDO performance for lignin-derived compounds. Selectivity to deoxygenated products increases 2.5 folds over Ni0.92Nb0.08 than over bulk Ni catalyst.
[GRAPHICS]
.