梁长海

个人信息Personal Information

教授

博士生导师

硕士生导师

任职 : 大连理工大学成都研究院院长

性别:男

毕业院校:中科院大连化学物理研究所

学位:博士

所在单位:化工学院

学科:化学工艺. 物理化学. 功能材料化学与化工

办公地点:大连理工大学西部校区化工综合楼A401室

联系方式:辽宁省大连市高新区凌工路2号,邮编116024

电子邮箱:changhai@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Synergetic effect between Cu-0 and Cu+ in the Cu-Cr catalysts for hydrogenolysis of glycerol

点击次数:

论文类型:期刊论文

发表时间:2014-10-01

发表刊物:2nd International Congress on Catalysis for Biorefineries (CatBior)

收录刊物:SCIE、EI、CPCI-S、Scopus

卷号:234

期号:,SI

页面范围:200-207

ISSN号:0920-5861

关键字:Cu-Cr catalysts; Glycerol hydrogenolysis; 1,2-Propanediol; Synergetic effect

摘要:Active species of Cu-Cr catalysts, prepared by an epoxide-assisted sol-gel route, were investigated for the hydrogenolysis of glycerol to 1,2-propanediol. Structural characterization of the catalysts was performed by means of N-2 physisorption, X-ray diffraction, H-2-temperature programmed reduction, high-resolution X-ray photoelectron spectroscopy, NH3-temperature programmed desorption, and N2O titration. On the basis of the characterizations, the copper species on the calcined Cu-Cr catalysts and the reduced Cu-Cr catalysts were assigned. Combined with reaction results, it was found that there was not similar trend in copper metal surface area and glycerol conversion, indicating that a two-site (Cu-0 and Cut) mechanism existed in the hydrogenolysis of glycerol over Cu-Cr catalysts. Besides, the maximum conversion of glycerol was obtained when the surface Cu-0/Cu+ ratio increased from 3.1 to 6.6, whereas decreased with increasing sequentially to 15.7, demonstrating that the appropriate surface Cu-0/Cu+ ratio was required for optimum hydrogenation activity. Thus, the synergetic effect between the Cu-0 and Cu+ was considered to be responsible for the high catalytic activity in the hydrogenolysis of glycerol, and that CuCr2O4 played a critical role in the glycerol hydrogenolysis reaction since it could function as a "hydrogen delivery bridge". (C) 2014 Elsevier B.V. All rights reserved.