梁长海

个人信息Personal Information

教授

博士生导师

硕士生导师

任职 : 大连理工大学成都研究院院长

性别:男

毕业院校:中科院大连化学物理研究所

学位:博士

所在单位:化工学院

学科:化学工艺. 物理化学. 功能材料化学与化工

办公地点:大连理工大学西部校区化工综合楼A401室

联系方式:辽宁省大连市高新区凌工路2号,邮编116024

电子邮箱:changhai@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

New insights into high-valence state Mo in molybdenum carbide nanobelts for hydrogen evolution reaction

点击次数:

论文类型:期刊论文

发表时间:2017-04-20

发表刊物:INTERNATIONAL JOURNAL OF HYDROGEN ENERGY

收录刊物:SCIE、EI

卷号:42

期号:16

页面范围:10880-10890

ISSN号:0360-3199

关键字:Molybdenum carbide; High-valence state Mo; Hydrogen evolution reaction

摘要:Hydrogen evolution reaction (HER) is considered to be one of the most promising strategies to create hydrogen. Recently, searching high-efficient, stable, and earth-abundant electrocatalysts to replace precious metals for practical utilizations of HER is attracting more and more attentions. Herein, novel molybdenum carbide nanobelts containing Mo of high-valence state derived from MoO3-ethylenediamine inorganic/organic hybrid precursors are successfully synthesized via a facile one-pot pyrolysis method. The molybdenum carbide nanobelts are characterized using XRD, SEM, TEM and XPS. Moreover, the high-valence state Mo and their relative content in the molybdenum carbide nanobelts can be identified by XPS. The high-resolution XPS spectra of Mo 3d indicates in the molybdenum carbide nanobelts the proportion of high-valence state Mo in active Mo components is 51.3%. More importantly, the as-synthesized products exhibit excellent electrocatalytic activity for HER with a low onset overpotential of 50 mV and a small Tafel slope of 49.6 mV dec(-1) in acidic medium (0.5 M H2SO4). Besides, the catalysts require only overpotentials of 143 and 234 my to achieve current densities of 10 and 220 mA cm(-2), respectively. Furthermore, they also exhibit good durability after 2000 cycles and constant current density test. Such excellent electrocatalytic HER performance can be ascribed to the high intrinsic activity of high valence state Mo in Molybdenum Carbide. Synthesizing molybdenum carbide with high valence state Mo electrocatalysts for HER will open up an exciting alternative avenue to acquire outstanding HER electrocatalytic activity. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.