![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
任职 : 大连理工大学成都研究院院长
性别:男
毕业院校:中科院大连化学物理研究所
学位:博士
所在单位:化工学院
学科:化学工艺. 物理化学. 功能材料化学与化工
办公地点:大连理工大学西部校区化工综合楼A401室
联系方式:辽宁省大连市高新区凌工路2号,邮编116024
电子邮箱:changhai@dlut.edu.cn
Preparation, structure and catalytic properties of magnetically separable Cu-Fe catalysts for glycerol hydrogenolysis
点击次数:
论文类型:期刊论文
发表时间:2012-08-28
发表刊物:JOURNAL OF MATERIALS CHEMISTRY
收录刊物:SCIE、EI、Scopus
卷号:22
期号:32
页面范围:16598-16605
ISSN号:0959-9428
摘要:The Cu-Fe catalysts with stoichiometric proportion (Cu/Fe molar ratio was 0.5) were prepared by an epoxide assisted route. The structural properties of Cu-Fe catalysts were determined by X-ray diffraction (XRD), and Mossbauer spectroscopy measurements. These results indicated that a crystalline phase transformation from c-CuFe2O4 to t-CuFe2O4 occurred when elevating the calcination temperature from 500 to 600 degrees C. The M-H plots exhibited that all Cu-Fe catalysts had ferromagnetic nature and the saturation magnetization values monotonously increased with increasing calcination temperature irrespective of the phases composition. The significant superparamagnetic behavior was observed in the results of magnetic and Mossbauer spectroscopy measurements. The H-2 temperature-programmed reduction (H-2-TPR) was also conducted for examining the reducibility of Cu-Fe catalysts. The catalytic performance of Cu-Fe catalysts was examined for the hydrogenolysis reaction of glycerol. It is found that the formation of spinel CuFe2O4 greatly enhances the hydrogenolysis activity. The highest glycerol conversion (47%) was obtained over CuFe-500 catalyst, while the selectivity of 1,2-propanediol was maintained at about 92% for all catalysts.