Release Time:2019-03-13 Hits:
Indexed by: Journal Article
Date of Publication: 2016-08-15
Journal: INORGANIC CHEMISTRY
Included Journals: Scopus、PubMed、SCIE
Volume: 55
Issue: 16
Page Number: 8153-8159
ISSN: 0020-1669
Abstract: The design of a new photocatalytic system and integrating the essential components in a structurally controlled manner to create artificially photosynthetic systems is high desirable. By incorporating a photoactive triphenylamine moiety to assemble a Gd-based metal-organic framework as a heterogeneous photosensitizer, new artificial systems were constructed for the proton and carbon dioxide reduction under irradiation. The assembled MOFs exhibited a one-dimensional metal-oxygen pillar that was connected together by the depronated TCA(3-) ligands to form a three-dimensional non interpenetrating porous framework. The combining of proton reduction and/or the carbon dioxide reduction catalysts, i.e., the Fe-Fe hydrogenase active site models and the Ni(Cyclam) complexes, initiated a photoinduced single electron transfer from its excited state to the substrate. The system exhibited an initial TOF of 320 h(-1) of hydrogen per catalyst and an overall quantum yield of about 0.21% and,is able to reduce carbon dioxide under irradiation. The deposit of the photoactive Gd-TCA into the film of an alpha-Al2O3 plate provided a platform for the practical applications through prolonging the lifetime of the artifical system and allowed the easily operated devices being recyclable as a promising photocatalytic system.