• 更多栏目

    余隽

    • 副教授     博士生导师   硕士生导师
    • 任职 : 仪器仪表学会传感器分会理事;中国仪器仪表学会微纳器件与系统技术分会理事;IEEE会员
    • 性别:女
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:生物医学工程学院
    • 学科:微电子学与固体电子学. 生物医学工程. 电路与系统
    • 电子邮箱:junyu@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Enhanced room temperature sensing of Co3O4-intercalated reduced graphene oxide based gas sensors

    点击次数:

    论文类型:期刊论文

    第一作者:Chen, Ning

    通讯作者:Li, XG (reprint author), Dalian Univ Technol, Sch Elect Sci & Technol, Inst Sensing Technol, Key Lab Liaoning Integrated Circuits Technol, Dalian 116024, Peoples R China.

    合写作者:Li, Xiaogan,Wang, Xueyan,Yu, Jun,Wang, Jing,Tang, Zhenan,Akbar, S. A.

    发表时间:2013-11-01

    发表刊物:SENSORS AND ACTUATORS B-CHEMICAL

    收录刊物:SCIE、EI、Scopus

    卷号:188

    页面范围:902-908

    ISSN号:0925-4005

    关键字:Graphene oxide; Co3OP4-rGO; NO2 Methanol; Gas sensors

    摘要:The room temperature gas sensing properties of the Co3O4 intercalated reduced graphene oxide (rGO) based thick film semiconductor sensors were investigated. The Co3O4-rGO composite based sensors showed a much higher response to NO2 at room temperature compared to the rGO based sensors. However, with an increase in the rGO concentration from 5 wt% to 30 wt%, the response showed a decreasing tendency. The sensor response to NO2 was not fully recovered within the measurement time (similar to 20 min) due to the much strong adsorption of NO2 at the defective sites of rGO. In contrast, the sensors using rGO showed a fast response and full recovery to methanol. This has been proposed to be exclusively due to the interaction of methanol with the sp(2) bonding of the carbon. Similarly, with Co3O4 intercalated rGO, the response was significantly enhanced and the response/recovery time was within 1-2 min. Two possible reasons have been discussed including the increased surface area of the rGO thick film by the intercalation of Co304 nanocrystals and the Co3+-carbon coupling effect for the rapid response. (C) 2013 Elsevier B.V. All rights reserved.