李燕

个人信息Personal Information

副教授

硕士生导师

性别:女

毕业院校:大连理工大学

学位:博士

所在单位:化工学院

电子邮箱:yanli@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Molecular simulation of a series of benzothiazole PI3K alpha inhibitors: probing the relationship between structural features, anti-tumor potency and selectivity

点击次数:

论文类型:期刊论文

发表时间:2012-07-01

发表刊物:JOURNAL OF MOLECULAR MODELING

收录刊物:SCIE、Scopus

卷号:18

期号:7

页面范围:2943-2958

ISSN号:1610-2940

关键字:Benzothiazole analogs; CoMFA; CoMSIA; 3D-QSAR; Molecular docking; Molecular dynamics simulation; PI3K alpha

摘要:The phosphatidylinositol 3-kinase alpha (PI3K alpha) was genetically validated as a promising therapeutic target for developing novel anticancer drugs. In order to explore the structure-activity correlation of benzothiazole series as inhibitors of PI3K alpha, comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA) were performed on 61 promising molecules to build 3D-QSAR models based on both the ligand- and receptor-based methods. The best CoMFA and CoMSIA models had a cross-validated coefficient r(cv) (2) of 0.618 and 0.621, predicted correlation coefficient r(pred) (2) of 0.812 and 0.83, respectively, proving their high correlative and predictive abilities on both the training and test sets. In addition, docking analysis and molecular dynamics simulation (MD) were also applied to elucidate the probable binding modes of these inhibitors at the ATP binding pocket. Based on the contour maps and MD results, some key structural factors responsible for the activity of this series of compounds were revealed as follows: (1) Ring-A has a strong preference for bulky hydrophobic or aromatic groups; (2) Electron-withdrawing groups at the para position of ring-B and hydrophilic substituents in ring-B region may benefit the potency; (3) A polar substituent like -NHSO2- between ring-A and ring-B can enhance the activity of the drug by providing hydrogen bonding interaction with the protein target. The satisfactory results obtained from this work strongly suggest that the developed 3D-QSAR models and the obtained PI3K alpha inhibitor binding structures are reasonable for the prediction of the activity of new inhibitors and be helpful in future PI3K alpha inhibitor design.