![]() |
个人信息Personal Information
副教授
硕士生导师
性别:女
毕业院校:大连理工大学
学位:博士
所在单位:化工学院
电子邮箱:yanli@dlut.edu.cn
In silico Prediction of Androgenic and Nonandrogenic Compounds Using Random Forest
点击次数:
论文类型:期刊论文
发表时间:2009-04-01
发表刊物:QSAR & COMBINATORIAL SCIENCE
收录刊物:SCIE、Scopus
卷号:28
期号:4
页面范围:396-405
ISSN号:1611-020X
关键字:Androgen receptor; Classification; QSAR; Random forest
摘要:The purpose of the present study was to develop in silico models allowing for a reliable prediction of androgenic and nonandrogenic compounds based on a large diverse dataset of 205 compounds. As a new classification method, the Random Forest (RF) was applied, its performance to classify these compounds in terms of their Quantitative Structure-Activity Relationships (QSAR) was evaluated and also compared with the widely used Partial Least Squares (PLS) analysis for the dataset. The predictive power of these methods was verified with five-fold cross-validation and an independent test set. For the RF model, the prediction accuracies of the androgenic and nonandrogenic compounds are 81.0 and 77.0% for cross-validation, respectively, averaging 87.3% of correctly classified compounds in the external tests. The PLS is slightly weak, showing an average prediction accuracy of 75 and 74.7% for the cross-validation and external validation, respectively. Our analysis demonstrates that RF is a powerful tool capable of building models for the data and should be valuable for virtual screening of androgen receptor-binding ligands.