Hits:
Indexed by:期刊论文
Date of Publication:2013-10-16
Journal:EUROPEAN PHYSICAL JOURNAL B
Included Journals:SCIE、EI、Scopus
Volume:86
Issue:10
ISSN No.:1434-6028
Abstract:To analyze the origin of the magnetic enhancement of Fe-Ni alloy, the electronic configurations and magnetic properties were investigated using density functional theory based on the first-principle. The supercell (5 x 1 x 1) of Fe, Fe9Ni1 and Fe8Ni2 were constructed. The defect formation energy, band structure, density of states and electron density difference were calculated. The results showed that Ni doping changed the electronic configuration of Fe atoms, resulting in the enhancement of spin polarization of Fe and the larger Bohr magnetic moment in Fe-Ni alloys (Fe9Ni1). The results showed that the charge transfer and the atomic spacing between Fe atoms and the dopant Ni atoms played an important role in determination of magnetic moment. The value of Fe supercell (5 x 1 x 1), Fe9Ni1 and Fe8Ni2 were 23.14, 23.34 and 22.61 mu(B), respectively.