Hits:
Indexed by:期刊论文
Date of Publication:2009-01-01
Journal:FIXED POINT THEORY AND APPLICATIONS
Included Journals:SCIE、Scopus
Volume:2009
ISSN No.:1687-1820
Abstract:By means of Schauder fixed point theorem and Banach contraction principle, we investigate the existence and uniqueness of Lipschitz solutions of the equation rho(f) circle f = F. Moreover, we get that the solution f depends continuously on F. As a corollary, we investigate the existence and uniqueness of Lipschitz solutions of the series-like iterative equation Sigma(infinity)(n=1) a(n)f(n)(x) = F(x), x is an element of B with a general boundary restriction, where F : B -> A is a given Lipschitz function, and B, A are compact convex subsets of R(N) with nonempty interior. Copyright (C) 2009