location: Current position: Home >> Scientific Research >> Paper Publications

Context Curves for Classification of Lung Nodule Images

Hits:

Indexed by:会议论文

Date of Publication:2013-11-26

Included Journals:EI、CPCI-S、Scopus

Page Number:185-191

Key Words:lung nodule; feature design; context curve; classification

Abstract:In this paper, a feature-based imaging classification method is presented to classify the lung nodules in low dose computed tomography (LDCT) slides into four categories: well-circumscribed, vascularized, juxta-pleural and pleural-tail. The proposed method focuses on the feature design, which describes both lung nodule and surrounding context information, and contains two main stages: (1) superpixel labeling, which labels the pixels into foreground and background based on an image patch division approach, (2) context curve calculation, which transfers the superpixel labeling result into feature vector. While the first stage preprocesses the image, extracting the major context anatomical structures for each type of nodules, the context curve provides a discriminative description for intra- and inter-type nodules. The evaluation is conducted on a publicly available dataset and the results indicate the promising performance of the proposed method on lung nodule classification.

Pre One:面向认知特点的《数据库系统》教学方法探讨

Next One:Overlapping Node Discovery for Improving Classification of Lung Nodules