个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:吉林工业大学
学位:博士
所在单位:机械工程学院
电子邮箱:pinghu@dlut.edu.cn
Investigation of interfacial heat transfer mechanism for 7075-T6 aluminum alloy in HFQ hot forming process
点击次数:
论文类型:期刊论文
发表时间:2017-05-25
发表刊物:APPLIED THERMAL ENGINEERING
收录刊物:SCIE、EI、Scopus
卷号:118
页面范围:266-282
ISSN号:1359-4311
关键字:Hot forming; HFQ; IHTC; Beck's method; 7075-T6; Heat transfer mechanism
摘要:The IHTC (Interfacial-Heat-Transfer-Coefficient) between aluminum alloy and die during HFQ (Heat-Forming-Quenching) process is an important thermal parameter to reflect the heat transfer efficiency. In the present work, the instantaneous heat transfer law for high strength 7075-T6 alloy during HFQ process based on cylindrical-die model was investigated. The accuracy of IHTC calculated by Beck's non-linear estimation method (Beck's method) and heat balance method (HBM) were compared, and instantaneous IHTC of 7075-T6 alloy was acquired in experiment and analyzed in consideration of different contact pressure, surface roughness and lubricate conditions. Furthermore, the obtained IHTC was applied to the simulation process of typical U-type experimental model in order to validate the universality of heat transfer law. The result shows that the average IHTC goes near to 3300 W/m(2).K when pressure is above 80 MPa; Surface roughness can also affect the IHTC in HFQ process, but the effect mechanism is different from the boron steel in hot stamping process. The average IHTC decreases sharply when surface roughness increases in the range of 0.570-0.836 mu m, the value is from 3453 W/m(2).K to 2001 W/m(2).K under 80 MPa. Furthermore, surface lubrication can promote heat transfer efficiency and increase IHTC value when contact pressure is relatively high. (C) 2017 Elsevier Ltd. All rights reserved.