Zhang Zhao
Professor Supervisor of Doctorate Candidates Supervisor of Master's Candidates
Main positions:Professor in Process Mechanics
Gender:Male
Alma Mater:Dalian University of Technology
Degree:Doctoral Degree
School/Department:Department of Engineering Mechanics, Dalian University of Technology
Discipline:mechanics of manufacturing process. Engineering Mechanics. Computational Mechanics
Business Address:Room 619,Integrated Laboratory building (1#)
Contact Information:+86-411-84708432 zhangz@dlut.edu.cn
E-Mail:zhangz@dlut.edu.cn
Hits:
Indexed by:Journal Papers
Date of Publication:2016-11-25
Journal:PHYSICS LETTERS A
Included Journals:SCIE、Scopus
Volume:380
Issue:45
Page Number:3766-3772
ISSN No.:0375-9601
Key Words:Phononic crystal; Band gap; Bragg scattering; Local resonance
Abstract:A novel hybrid phononic crystal is designed to obtain wider band gaps in low frequency range. The hybrid phononic crystal consists of rubber slab with periodic holes and plumbum stubs. In comparison with the phononic crystal without periodic holes, the new designed phononic crystal can obtain wider band gaps and better vibration damping characteristics. The wider band gap can be attributed to the interaction of local resonance and Bragg scattering. The controlling of the BG is explained by the strain energy of the hybrid PC and the introduced effective mass. The effects of the geometrical parameters and the shapes of the stubs and holes on the controlling of waves are further studied. (C) 2016 Elsevier B.V. All rights reserved.
Zhang Zhao, Ph.D., Professor in Process Mechanics.
Editorial member in Coatings (IF:2.881) from 2020 to 2022.
Editorial member in Crystals (IF:2.589) from 2020 to 2022.
Younth editorial member in Journal of Central South University(IF:1.716) from 2020 to 2022.
Professor Zhang has published more than 60 SCI publications with over 1100 citations. He served as reviewers for more than 30 international journals. His main pulications can be found:
https://orcid.org/0000-0001-7181-8617
https://publons.com/researcher/1987190/zhao-zhang/
The scientific research focuses on experimental and numerical works on friction stir welding/processing/additive manufacturing, numerical modelling and simulation of additive manufacuring, topological design of phononic crystals, locomotive and high speed train design.