Zhang Zhao
Professor Supervisor of Doctorate Candidates Supervisor of Master's Candidates
Main positions:Professor in Process Mechanics
Gender:Male
Alma Mater:Dalian University of Technology
Degree:Doctoral Degree
School/Department:Department of Engineering Mechanics, Dalian University of Technology
Discipline:mechanics of manufacturing process. Engineering Mechanics. Computational Mechanics
Business Address:Room 619,Integrated Laboratory building (1#)
Contact Information:+86-411-84708432 zhangz@dlut.edu.cn
E-Mail:zhangz@dlut.edu.cn
Hits:
Indexed by:期刊论文
Date of Publication:2008-09-01
Journal:JOURNAL OF MATERIALS SCIENCE
Included Journals:SCIE、EI、Scopus
Volume:43
Issue:17
Page Number:5867-5877
ISSN No.:0022-2461
Abstract:Two contact models are used to simulate the thermo-mechanical interaction process in friction stir welding. Comparison shows that the classical Coulomb friction model can be accurate enough for the simulation of friction stir welding in lower angular velocity. But in higher angular velocity, the classical Coulomb friction model fails to work due to the increase of the dynamic effect of the welding tool. Because the shear failure of material is considered in modified Coulomb friction model, the increase of the frictional stress on the tool-plate interface is limited by the shear failure. So, this model can keep valid even when the angular velocity of the welding tool is increased to a high level.
Zhang Zhao, Ph.D., Professor in Process Mechanics.
Editorial member in Coatings (IF:2.881) from 2020 to 2022.
Editorial member in Crystals (IF:2.589) from 2020 to 2022.
Younth editorial member in Journal of Central South University(IF:1.716) from 2020 to 2022.
Professor Zhang has published more than 60 SCI publications with over 1100 citations. He served as reviewers for more than 30 international journals. His main pulications can be found:
https://orcid.org/0000-0001-7181-8617
https://publons.com/researcher/1987190/zhao-zhang/
The scientific research focuses on experimental and numerical works on friction stir welding/processing/additive manufacturing, numerical modelling and simulation of additive manufacuring, topological design of phononic crystals, locomotive and high speed train design.