个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:天津大学
学位:博士
所在单位:机械工程学院
学科:机械制造及其自动化. 机械设计及理论
办公地点:机械工程学院知方楼5055
联系方式:zzy@dlut.edu.cn
电子邮箱:zzy@dlut.edu.cn
Enhanced thermal conductivity of epoxy composites filled with tetrapod-shaped ZnO
点击次数:
论文类型:期刊论文
发表时间:2018-01-01
发表刊物:RSC ADVANCES
收录刊物:SCIE、EI
卷号:8
期号:22
页面范围:12337-12343
ISSN号:2046-2069
摘要:Epoxy composites with ZnO powders characterized by different structures as inclusion are prepared and their thermal properties are studied. The experimental results demonstrate that the epoxy resins filled by tetrapod-shaped ZnO (T-ZnO) whiskers have the superior thermal transport property in comparison to ZnO micron particles (ZnO MPs). The thermal conductivity of ZnO/epoxy and T-ZnO/epoxy composites in different mass fraction (10, 20, 30, 40, 50 wt%) are respectively investigated and the suitable models are compared to explain the enhancement effect of thermal conductivity. The thermal conductivity of TZnO/epoxy composites with 50 wt% filler reaches 4.38 W m(-1) K-1, approximately 1816% enhancement as compared to neat epoxy. In contrast, the same mass fraction of ZnO MPs are incorporated into epoxy matrix showed less improvement on thermal conduction properties. This is because T-ZnO whiskers act as a thermal conductance bridge in the epoxy matrix. In addition, the other thermal properties of T-ZnO/epoxy composites are also improved. Furthermore, the T-ZnO/epoxy composite also presents a much reduced coefficient of thermal expansion (similar to 28.1 ppm K-1) and increased glass transition temperature (215.7 degrees C). This strategy meets the requirement for the rapid development of advanced electronic packaging.