Zewu Wang
Associate Professor Supervisor of Master's Candidates
Gender:Male
Alma Mater:Huazhong University of Science and Technology
Degree:Doctoral Degree
School/Department:School of Chemical Machinery & Safety
Discipline:Chemical Process Equipment. Safety Science and Engineering
Business Address:H317,Building of Chemical Machinery
Contact Information:wangzewu@dlut.edu.cn
E-Mail:wangzewu@dlut.edu.cn
Hits:
Indexed by:Journal Papers
Date of Publication:2019-06-10
Journal:STRUCTURAL ENGINEERING AND MECHANICS
Included Journals:SCIE
Volume:70
Issue:5
Page Number:525-534
ISSN No.:1225-4568
Key Words:buckling; thin plate; thickness variation; compression; analytical expressions
Abstract:An analytical research on buckling of simply supported thin plate with variable thickness under bi-axial compression is presented in this paper. Combining the perturbation technique, Fourier series expansion and Galerkin methods, the linear governing differential equation of the plate with arbitrary thickness variation under bi-axial compression is solved and the analytical expression of the critical buckling load is obtained. Based on that, numerical analysis is carried out for the plates with different thickness variation forms and aspect ratios under different bi-axial compressions. Four different thickness variation forms including linear, parabolic, stepped and trigonometric have been considered in this paper. The calculated critical buckling loads and buckling modes are presented and compared with the published results in the tables and figures. It shows that the analytical expressions derived by the theoretical method in this paper can be effectively used for buckling analysis of simply supported thin plates with arbitrary thickness variation, especially for the stepped thickness that used in engineering widely.