个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:Professor Dr. Hongbin Ding
其他任职:物理学院学术委员会主任,等离子体联合研究中心主任,中国光学工程学会LIBS专委会副主任, 中国核学会核聚变等离子体分会常务理事,辽宁省物理学会副理事长,国际ITER-ITPA 委员
性别:男
毕业院校:巴塞尔大学
学位:博士
所在单位:物理学院
学科:等离子体物理. 光学工程
联系方式:hding@dlut.edu.cn
电子邮箱:hding@dlut.edu.cn
Numerical simulation of laser ablation of molybdenum target for laser-induced breakdown spectroscopic application
点击次数:
论文类型:期刊论文
发表时间:2018-08-01
发表刊物:PLASMA SCIENCE & TECHNOLOGY
收录刊物:SCIE
卷号:20
期号:8
ISSN号:1009-0630
关键字:LIBS; ablation process; molybdenum target; numerical simulation
摘要:Laser-induced breakdown spectroscopy has been recognized as a significant tool for element diagnostics in plasma-wall interaction. In this work, a one-dimensional numerical model is developed to simulate the laser ablation processes of a molybdenum (Mo) target in vacuum conditions. The thermal process of the interaction between the ns-pulse laser with wavelength of 1064 nm and the Mo target is described by the heat conduction equation. The plasma plume generation and expansion are described by Euler equations, in which the conservation of mass density, momentum and energy are included. Saha equations are used to describe the local thermal equilibrium of electrons, Mo atoms, Mo+ and Mo2+. Plasma shielding and emission are all considered in this model. The mainly numerical results are divided into three parts, as listed below. Firstly, the rule of the plasma shielding effect varying with laser intensity is demonstrated quantitatively and fitted with the Nelder function. Secondly, the key parameters of plasma plume, such as the number density of species, the propagation velocity and the temperature, are all calculated in this model. The results indicate that the propagation velocity of the plume center increased with time in a general trend, however, one valley value appeared at about 20 ns due to the pressure gradient near the target surface leading to negative plasma velocity. Thirdly, the persistent lines of a Mo atom in the wavelength range from 300 nm to 600 nm are selected and the spectrum is calculated. Moreover, the temporal evolutions of Mo's spectral lines at wavelength of 550.6494 nm, 553.3031 nm and 557.0444 nm are given and the results are compared with experimental data in this work.