个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:Professor Dr. Hongbin Ding
其他任职:物理学院学术委员会主任,等离子体联合研究中心主任,中国光学工程学会LIBS专委会副主任, 中国核学会核聚变等离子体分会常务理事,辽宁省物理学会副理事长,国际ITER-ITPA 委员
性别:男
毕业院校:巴塞尔大学
学位:博士
所在单位:物理学院
学科:等离子体物理. 光学工程
联系方式:hding@dlut.edu.cn
电子邮箱:hding@dlut.edu.cn
An approach of stand-off measuring hardness of tungsten heavy alloys using LIBS
点击次数:
论文类型:期刊论文
发表时间:2020-01-01
发表刊物:APPLIED PHYSICS B-LASERS AND OPTICS
收录刊物:EI、SCIE
卷号:126
期号:1
页面范围:5-
ISSN号:0946-2171
摘要:Surface hardness and microstructural properties are important parameters of plasma-facing material and play a key role in long pulse operation of fusion reactor. Nowadays, nuclear reactors are facing the problem of change in physical properties especially surface hardness due to dominant extreme conditions. Consequently, it is important to monitor these changes. Laser-induced breakdown spectroscopy (LIBS) has a potential diagnostic ability to monitor in situ surface hardness and their correlation with plasma wall interaction. In this work, the hardness of different tungsten heavy alloy grades is measured by stand-off approach using LIBS. The difference in hardness was attributed to grain size, crystal size, dislocations density and energy band gap (Eg) of materials. These microstructural and electronic structure properties have direct impact on electron temperature in laser-ablated plasma. Plasma electron temperature has been determined using Boltzmann plot method in the range from 1.76 +/- 0.01 to 1.90 +/- 0.02 eV, while electron density has been derived using Stark broadening spectral profile of (W-I) 429.47 nm line. The obtained direct relation between the ionic to atomic species of (WII/WI) and the material hardness are associated to increase in the value of plasma electron temperature (Te). The energy band gap of these tungsten heavy alloy targets has been observed from 3.24 to 3.59 eV as hardness increases from 314 +/- 2.2 to 354 +/- 1.1. The results showed that the energy band gap of these targets increases with hardness and have direct relation with plasma electron temperature. Ablation efficiency was also measured as a function of laser irradiance from crater depth analysis. The results showed that average ablation rate is decreased from soft to hard material.