吴硕

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:化学学院副院长

其他任职:辽宁省教学名师,宝钢优秀教师特等奖提名奖,中国分析测试学会青年学术委员会委员

性别:女

毕业院校:南京大学

学位:博士

所在单位:化学学院

学科:分析化学. 生物化学与分子生物学

办公地点:化工综合楼C305

电子邮箱:wushuo@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

A carboxylated graphene nanodisks/glucose oxidase nanotags and Mn:CdS/TiO2 matrix based dual signal amplification strategy for ultrasensitive photoelectrochemical detection of tumor markers

点击次数:

论文类型:期刊论文

发表时间:2017-12-21

发表刊物:ANALYST

收录刊物:SCIE、PubMed

卷号:142

期号:24

页面范围:4647-4654

ISSN号:0003-2654

摘要:Graphene nanodisks with good conductivity and plenty of edge sites were synthesized to load glucose oxidase (GRD-GOD) and coupled with a Mn2+ doped CdS quantum dot (QD) modified TiO2 electrode (CdS: Mn/TiO2) for a highly sensitive photoelectrochemical (PEC) immunoassay. The specific immune-recognition behaviour can bring the GRD-GOD labelled antigen into the antibody immobilized CdS: Mn/ TiO2 interface and dramatically enhance the photocurrent response via a dual signal amplification strategy. First, graphene nanodisks with a strong electron transfer capacity can improve the conductivity of both the insulating protein layers and the CdS: Mn/TiO2 matrix, thus facilitating the regeneration of trapped carriers and hot electrons in the CdS: Mn QD films and enhancing the PEC performance. Second, graphene nanodisks introduce a great number of GOD molecules into a PEC detection process, which catalyze glucose to produce numerous molecules of H2O2. The latter act as sacrificial electron donors to scavenge photogenerated holes, retard the electron-hole recombination, and significantly improve the photo-to-electron conversion efficiency. Based on the dual signal amplification strategy and using a carcinoembryonic antigen as a model target, a highly sensitive PEC immunoassay was therefore developed with an extremely low limit of detection of 5.65 fg mL(-1) and a rather wide linear range from 10 fg mL-1 to 1 ng mL(-1). The immunoassay showed good reproducibility and stability, as well as good selectivity and high accuracy in serum sample analysis. In this regard, PEC immunosensors may have great application potential for the screening of tumor markers and the prevention and monitoring of serious diseases.