![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:teaching
性别:男
毕业院校:重庆大学
学位:博士
所在单位:软件学院、国际信息与软件学院
学科:软件工程. 计算机软件与理论
办公地点:开发区综合楼405
联系方式:Email: zkchen@dlut.edu.cn Moble:13478461921 微信:13478461921 QQ:1062258606
电子邮箱:zkchen@dlut.edu.cn
High-order possibilistic c-means algorithms based on tensor decompositions for big data in IoT
点击次数:
论文类型:期刊论文
发表时间:2018-01-01
发表刊物:INFORMATION FUSION
收录刊物:Scopus、SCIE、EI、ESI高被引论文、ESI热点论文
卷号:39
页面范围:72-80
ISSN号:1566-2535
关键字:Big data; IoT; Possibilistic c-means clustering; Canonical polyadic decomposition; Tensor-train network
摘要:Internet of Things (IoT) connects the physical world and the cyber world to offer intelligent services by data mining for big data. Each big data sample typically involves a large number of attributes, posing a remarkable challenge on the high-order possibilistic c-means algorithm (HOPCM). Specially, HOPCM requires high-performance servers with a large-scale memory and a powerful computing unit, to cluster big samples, limiting its applicability in IoT systems with low-end devices such as portable computing units and embedded devises which have only limited memory space and computing power. In this paper, we propose two high-order possibilistic c-means algorithms based on the canonical polyadic decomposition (CP-HOPCM) and the tensor-train network (TT-HOPCM) for clustering big data. In detail, we use the canonical polyadic decomposition and the tensor-train network to compress the attributes of each big data sample. To evaluate the performance of our algorithms, we conduct the experiments on two representative big data datasets, i.e., NUS-WIDE-14 and SNAE2, by comparison with the conventional high order possibilistic c-means algorithm in terms of attributes reduction, execution time, memory usage and clustering accuracy. Results imply that CP-HOPCM and TT-HOPCM are potential for big data clustering in IoT systems with low-end devices since they can achieve a high compression rate for heterogeneous samples to save the memory space significantly without a significant clustering accuracy drop. (C) 2017 Published by Elsevier B.V.