陈志奎

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:teaching

性别:男

毕业院校:重庆大学

学位:博士

所在单位:软件学院、国际信息与软件学院

学科:软件工程. 计算机软件与理论

办公地点:开发区综合楼405

联系方式:Email: zkchen@dlut.edu.cn Moble:13478461921 微信:13478461921 QQ:1062258606

电子邮箱:zkchen@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

High-order possibilistic c-means algorithms based on tensor decompositions for big data in IoT

点击次数:

论文类型:期刊论文

发表时间:2018-01-01

发表刊物:INFORMATION FUSION

收录刊物:Scopus、SCIE、EI、ESI高被引论文、ESI热点论文

卷号:39

页面范围:72-80

ISSN号:1566-2535

关键字:Big data; IoT; Possibilistic c-means clustering; Canonical polyadic decomposition; Tensor-train network

摘要:Internet of Things (IoT) connects the physical world and the cyber world to offer intelligent services by data mining for big data. Each big data sample typically involves a large number of attributes, posing a remarkable challenge on the high-order possibilistic c-means algorithm (HOPCM). Specially, HOPCM requires high-performance servers with a large-scale memory and a powerful computing unit, to cluster big samples, limiting its applicability in IoT systems with low-end devices such as portable computing units and embedded devises which have only limited memory space and computing power. In this paper, we propose two high-order possibilistic c-means algorithms based on the canonical polyadic decomposition (CP-HOPCM) and the tensor-train network (TT-HOPCM) for clustering big data. In detail, we use the canonical polyadic decomposition and the tensor-train network to compress the attributes of each big data sample. To evaluate the performance of our algorithms, we conduct the experiments on two representative big data datasets, i.e., NUS-WIDE-14 and SNAE2, by comparison with the conventional high order possibilistic c-means algorithm in terms of attributes reduction, execution time, memory usage and clustering accuracy. Results imply that CP-HOPCM and TT-HOPCM are potential for big data clustering in IoT systems with low-end devices since they can achieve a high compression rate for heterogeneous samples to save the memory space significantly without a significant clustering accuracy drop. (C) 2017 Published by Elsevier B.V.