![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:teaching
性别:男
毕业院校:重庆大学
学位:博士
所在单位:软件学院、国际信息与软件学院
学科:软件工程. 计算机软件与理论
办公地点:开发区综合楼405
联系方式:Email: zkchen@dlut.edu.cn Moble:13478461921 微信:13478461921 QQ:1062258606
电子邮箱:zkchen@dlut.edu.cn
Incomplete Big Data Clustering Algorithm Using Feature Selection and Partial Distance
点击次数:
论文类型:会议论文
发表时间:2014-11-28
收录刊物:Scopus、EI、CPCI-S
页面范围:263-266
关键字:big data; incomplete data clustering; feature subset selection; cluster analysis
摘要:Incomplete data clustering plays an important role in the big data analysis and processing. Existing algorithms for clustering incomplete high-dimensional big data have low performances in both efficiency and effectiveness. The paper proposes an incomplete high-dimensional big data clustering algorithm based on feature selection and partial distance strategy. First, a hierarchical clustering-based feature subset selection algorithm is designed to reduce the dimensions of the data set. Next, a parallel k-means algorithm based on partial distance is derived to cluster the selected data subset in the first step. Experimental results demonstrate that the proposed algorithm achieves better clustering accuracy than the existing algorithms and takes significantly less time than other algorithms for clustering high-dimensional big data.