![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:teaching
性别:男
毕业院校:重庆大学
学位:博士
所在单位:软件学院、国际信息与软件学院
学科:软件工程. 计算机软件与理论
办公地点:开发区综合楼405
联系方式:Email: zkchen@dlut.edu.cn Moble:13478461921 微信:13478461921 QQ:1062258606
电子邮箱:zkchen@dlut.edu.cn
A Tucker Deep Computation Model for Mobile Multimedia Feature Learning
点击次数:
论文类型:期刊论文
发表时间:2017-08-01
发表刊物:ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS
收录刊物:Scopus、SCIE、EI、ESI高被引论文
卷号:13
期号:3
ISSN号:1551-6857
关键字:Deep learning; Tucker decomposition; deep computation; mobile multimedia; back-propagation
摘要:Recently, the deep computation model, as a tensor deep learning model, has achieved super performance for multimedia feature learning. However, the conventional deep computation model involves a large number of parameters. Typically, training a deep computation model with millions of parameters needs high-performance servers with large-scale memory and powerful computing units, limiting the growth of the model size for multimedia feature learning on common devices such as portable CPUs and conventional desktops. To tackle this problem, this article proposes a Tucker deep computation model by using the Tucker decomposition to compress the weight tensors in the full-connected layers for multimedia feature learning. Furthermore, a learning algorithm based on the back-propagation strategy is devised to train the parameters of the Tucker deep computation model. Finally, the performance of the Tucker deep computation model is evaluated by comparing with the conventional deep computation model on two representative multimedia datasets, that is, CUAVE and SNAE2, in terms of accuracy drop, parameter reduction, and speedup in the experiments. Results imply that the Tucker deep computation model can achieve a large-parameter reduction and speedup with a small accuracy drop for multimedia feature learning.