![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:teaching
性别:男
毕业院校:重庆大学
学位:博士
所在单位:软件学院、国际信息与软件学院
学科:软件工程. 计算机软件与理论
办公地点:开发区综合楼405
联系方式:Email: zkchen@dlut.edu.cn Moble:13478461921 微信:13478461921 QQ:1062258606
电子邮箱:zkchen@dlut.edu.cn
An Efficient Deep Learning Model to Predict Cloud Workload for Industry Informatics
点击次数:
论文类型:期刊论文
发表时间:2018-07-01
发表刊物:IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS
收录刊物:SCIE
卷号:14
期号:7
页面范围:3170-3178
ISSN号:1551-3203
关键字:Canonical polyadic decomposition; cloud workload prediction; deep learning; industry informatics
摘要:Deep learning, as the most important architecture of current computational intelligence, achieves super performance to predict the cloud workload for industry informatics. However, it is a nontrivial task to train a deep learning model efficiently since the deep learning model often includes a great number of parameters. In this paper, an efficient deep learning model based on the canonical polyadic decomposition is proposed to predict the cloud workload for industry informatics. In the proposed model, the parameters are compressed significantly by converting the weight matrices to the canonical polyadic format. Furthermore, an efficient learning algorithm is designed to train the parameters. Finally, the proposed efficient deep learning model is applied to the workload prediction of virtual machines on cloud. Experiments are conducted on the datasets collected from PlanetLab to validate the performance of the proposed model by comparing with other machine-learning-based approaches for workload prediction of virtual machines. Results indicate that the proposed model achieves a higher training efficiency and workload prediction accuracy than state-of-the-art machine-learning- based approaches, proving the potential of the proposed model to provide predictive services for industry informatics.