陈志奎

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:teaching

性别:男

毕业院校:重庆大学

学位:博士

所在单位:软件学院、国际信息与软件学院

学科:软件工程. 计算机软件与理论

办公地点:开发区综合楼405

联系方式:Email: zkchen@dlut.edu.cn Moble:13478461921 微信:13478461921 QQ:1062258606

电子邮箱:zkchen@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Combinative hypergraph learning in subspace for cross-modal ranking

点击次数:

论文类型:期刊论文

发表时间:2018-10-01

发表刊物:MULTIMEDIA TOOLS AND APPLICATIONS

收录刊物:SCIE

卷号:77

期号:19

页面范围:25959-25982

ISSN号:1380-7501

关键字:Cross-modal ranking; Subspace learning; Hypergraph; Similarity preserving

摘要:Recent years have witnessed a surge of interests in cross-modal ranking. To bridge the gap between heterogeneous modalities, many projection based methods have been studied to learn common subspace where the correlation across different modalities can be directly measured. However, these methods generally consider pair-wise relationship merely, while ignoring the high-order relationship. In this paper, a combinative hypergraph learning in subspace for cross-modal ranking (CHLS) is proposed to enhance the performance of cross-modal ranking by capturing high-order relationship. We formulate the cross-modal ranking as a hypergraph learning problem in latent subspace where the high-order relationship among ranking instances can be captured. Furthermore, we propose a combinative hypergraph based on fused similarity information to encode both the intra-similarity in each modality and the inter-similarity across different modalities into the compact subspace representation, which can further enhance the performance of cross-modal ranking. Experiments on three representative cross-modal datasets show the effectiveness of the proposed method for cross-modal ranking. Furthermore, the ranking results achieved by the proposed CHLS can recall 80% of the relevant cross-modal instances at a much earlier stage compared against state-of-the-art methods for both cross-modal ranking tasks, i.e. image query text and text query image.