![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:teaching
性别:男
毕业院校:重庆大学
学位:博士
所在单位:软件学院、国际信息与软件学院
学科:软件工程. 计算机软件与理论
办公地点:开发区综合楼405
联系方式:Email: zkchen@dlut.edu.cn Moble:13478461921 微信:13478461921 QQ:1062258606
电子邮箱:zkchen@dlut.edu.cn
Privacy-Preserving Double-Projection Deep Computation Model With Crowdsourcing on Cloud for Big Data Feature Learning
点击次数:
论文类型:期刊论文
发表时间:2018-08-01
发表刊物:IEEE INTERNET OF THINGS JOURNAL
收录刊物:SCIE、ESI高被引论文、Scopus
卷号:5
期号:4,SI
页面范围:2896-2903
ISSN号:2327-4662
关键字:Big data; deep computation model (DCM); feature learning; Internet of Things; privacy-preserving
摘要:Recent years have witness a considerable advance of Internet of Things with the tremendous progress of communication theories and sensing technologies. A large number of data, usually referring to big data, have been generated from Internet of Things. In this paper, we present a double-projection deep computation model (DPDCM) for big data feature learning, which projects the raw input into two separate subspaces in the hidden layers to learn interacted features of big data by replacing the hidden layers of the conventional deep computation model (DCM) with double-projection layers. Furthermore, we devise a learning algorithm to train the DPDCM. Cloud computing is used to improve the training efficiency of the learning algorithm by crowdsourcing the data on cloud. To protect the private data, a privacy-preserving DPDCM (PPDPDCM) is proposed based on the BGV encryption scheme. Finally, experiments are carried on Animal-20 and NUS-WIDE-14 to estimate the performance of DPDCM and PPDPDCM by comparing with DCM. Results demonstrate that DPDCM achieves a higher classification accuracy than DCM. More importantly, PPDPDCM can effectively improve the efficiency for training parameters, proving its potential for big data feature learning.