陈志奎

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:teaching

性别:男

毕业院校:重庆大学

学位:博士

所在单位:软件学院、国际信息与软件学院

学科:软件工程. 计算机软件与理论

办公地点:开发区综合楼405

联系方式:Email: zkchen@dlut.edu.cn Moble:13478461921 微信:13478461921 QQ:1062258606

电子邮箱:zkchen@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Privacy Preserving Deep Computation Model on Cloud for Big Data Feature Learning

点击次数:

论文类型:期刊论文

发表时间:2016-05-01

发表刊物:IEEE TRANSACTIONS ON COMPUTERS

收录刊物:SCIE、EI

卷号:65

期号:5

页面范围:1351-1362

ISSN号:0018-9340

关键字:Smart city; big data; deep computation model; cloud computing; BGV encryption; BGN encryption; high-order back-propagation

摘要:To improve the efficiency of big data feature learning, the paper proposes a privacy preserving deep computation model by offloading the expensive operations to the cloud. Privacy concerns become evident because there are a large number of private data by various applications in the smart city, such as sensitive data of governments or proprietary information of enterprises. To protect the private data, the proposed model uses the BGV encryption scheme to encrypt the private data and employs cloud servers to perform the high-order back-propagation algorithm on the encrypted data efficiently for deep computation model training. Furthermore, the proposed scheme approximates the Sigmoid function as a polynomial function to support the secure computation of the activation function with the BGV encryption. In our scheme, only the encryption operations and the decryption operations are performed by the client while all the computation tasks are performed on the cloud. Experimental results show that our scheme is improved by approximately 2.5 times in the training efficiency compared to the conventional deep computation model without disclosing the private data using the cloud computing including ten nodes. More importantly, our scheme is highly scalable by employing more cloud servers, which is particularly suitable for big data.