陈志奎

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:teaching

性别:男

毕业院校:重庆大学

学位:博士

所在单位:软件学院、国际信息与软件学院

学科:软件工程. 计算机软件与理论

办公地点:开发区综合楼405

联系方式:Email: zkchen@dlut.edu.cn Moble:13478461921 微信:13478461921 QQ:1062258606

电子邮箱:zkchen@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Energy-Efficient Scheduling for Real-Time Systems Based on Deep Q-Learning Model

点击次数:

论文类型:期刊论文

发表时间:2019-01-01

发表刊物:IEEE Transactions on Sustainable Computing

收录刊物:EI

卷号:4

期号:1

页面范围:132-141

摘要:Energy saving is a critical and challenging issue for real-time systems in embedded devices because of their limited energy supply. To reduce the energy consumption, a hybrid dynamic voltage and frequency scaling (DVFS) scheduling based on Q-learning (QL-HDS) was proposed by combining energy-efficient DVFS techniques. However, QL-HDS discretizes the system state parameters with a certain step size, resulting in a poor distinction of the system states. More importantly, it is difficult for QL-HDS to learn a system for various task sets with a Q-table and limited training sets. In this paper, an energy-efficient scheduling scheme based on deep Q-learning model is proposed for periodic tasks in real-time systems (DQL-EES). Specially, a deep Q-learning model is designed by combining a stacked auto-encoder and a Q-learning model. In the deep Q-learning model, the stacked auto-encoder is used to replace the Q-function for learning the Q-value of each DVFS technology for any system state. Furthermore, a training strategy is devised to learn the parameters of the deep Q-learning model based on the experience replay scheme. Finally, the performance of the proposed scheme is evaluated by comparison with QL-HDS on different simulation task sets. Results demonstrated that the proposed algorithm can save average 4.2\% energy than QL-HDS. ? 2016 IEEE.