陈志奎

个人信息Personal Information

教授

博士生导师

硕士生导师

主要任职:teaching

性别:男

毕业院校:重庆大学

学位:博士

所在单位:软件学院、国际信息与软件学院

学科:软件工程. 计算机软件与理论

办公地点:开发区综合楼405

联系方式:Email: zkchen@dlut.edu.cn Moble:13478461921 微信:13478461921 QQ:1062258606

电子邮箱:zkchen@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

A novel strategy to balance the results of cross-modal hashing

点击次数:

论文类型:期刊论文

发表时间:2020-11-01

发表刊物:PATTERN RECOGNITION

收录刊物:SCIE

卷号:107

ISSN号:0031-3203

关键字:Cross-modal hashing; Semantic gap; Semantic augmentation; Cross-modal retrieval

摘要:Hashing methods for cross-modal retrieval has drawn increasing research interests and has been widely studied in recent years due to the explosive growth of multimedia big data. However, a significant phenomenon which has been ignored is that there is a large gap between the results of cross-modal hashing in most cases. For example, the results of Text-to-Image frequently outperform that of Image-to-Text with a large margin. In this paper, we propose a strategy named semantic augmentation to improve and balance the results of cross-modal hashing. An intermediate semantic space is constructed to re-align the feature representations that embedded with weak semantic information. By using the intermediate semantic space, the semantic information of visual features can be further augmented before being sent to cross-modal hashing algorithms. Extensive experiments are carried out on four datasets via seven state-of-the-art cross-modal hashing methods. Compared against the results without semantic augmentation, the Image-to-Text results of these methods with semantic augmentation are improved considerably, which demonstrates the effectiveness of the proposed semantic augmentation strategy in bridging the gap between the results of cross-modal retrieval. Additional experiments are conducted on the real-valued, semi-supervised, semi-paired, partial-paired, and unpaired cross-modal retrieval methods, the results further indicates the effectiveness of our strategy in improving performance of cross-modal retrieval. (C) 2020 Elsevier Ltd. All rights reserved.