![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
主要任职:teaching
性别:男
毕业院校:重庆大学
学位:博士
所在单位:软件学院、国际信息与软件学院
学科:软件工程. 计算机软件与理论
办公地点:开发区综合楼405
联系方式:Email: zkchen@dlut.edu.cn Moble:13478461921 微信:13478461921 QQ:1062258606
电子邮箱:zkchen@dlut.edu.cn
基于嵌套滑动窗口的数据流缺失数据填充算法
点击次数:
发表时间:2022-10-10
发表刊物:西南师范大学学报 自然科学版
期号:11
页面范围:130-136
ISSN号:1000-5471
摘要:Characteristics of continuous ,massive and rapid make the traditional imputation algorithm can not be applied to data stream .In this paper ,a nested sliding window‐based missing data imputing algo‐rithm has been proposed .Taking into account the aging characteristics of the data stream of sensor net‐works ,we use a nested sliding window to select the data ,both of which have high spatial correlation and nearest data ,as sample data ,then to impute the missing data by two cases .Firstly ,we use the Pearson correlation to analysis the spatial relation of data ,then use nested sliding window to select the sample data which have strong spatial relation to each others ,then use MKNN algorithm to accurate impute .Pearson correlation analysis and nested window greatly reduced the data size greatly ,improved the real‐time pro‐cessing ;For missing data w hich do not having strong spatial correlation ,using simple linear correlation al‐gorithm to impute to reduce the complexity .Experimental results show that this algorithm can accurately to impute the missing data of data flow in real time .
备注:新增回溯数据